回首頁 | English
 
 
 
 
關於科學營
  為何舉辦科學營
科學營的目標
活動評審方式
科學營獎勵
參加辦法
第23屆科學營贊助單位
關於科學營的20年
講座大師
評審教授
夜談紀錄
歷屆活動
講座大師 - 第二十三屆
   
周美吟
 
Quantum 2.0: The Second Quantum Revolution in the 21st Century
量子2.0: 本世紀的第二次量子革命


HThere was a first quantum revolution in physics in the beginning of the 20th century that discovered that the physical laws governing electrons, atoms, and other tiny objects are completely different from what we are familiar with in classical physics. The underlying quantum laws seem to defy our common sense, but the predictions were verified by rigorous experiments, and various applications have been demonstrated. The subsequent development in many fields of sciences and technologies created lasers, magnetic resonance imaging, transistors, computers, superconductors, etc. and changed human lives in the 20th century in an unprecedented way.

At the end of the 20th century, it became clear that one could further exploit quantum entanglement, the “weird” properties of information encoded in quantum systems with interesting new applications. Based on “quantum bits (Qubits)”, quantum computers will be able to solve previously intractable problems, with far-reaching impact in cryptology, sciences, and technologies. In October 2019, a team at Google announced that they had made a programmable quantum computer with a 53-qubit processor that outperformed the most powerful conventional computers in a specific task. This represents a milestone in quantum computing and signals the beginning of quantum 2.0, the second quantum revolution. In this talk, I will give an introduction to the background of recent developments and exciting future outlooks.

在20世紀的初期,物理學上發生了一次重大革命。物理學家發現古典物理完全不能描述電子與原子的性質,因此建立了新的量子力學。雖然量子力學中很多原理違反我們的直覺,但是後來都被實驗證實了,人類正式進入量子的世代。其後這些量子物理現象被應用到各個科學與技術領域,發展出雷射、核磁共振、電晶體、電腦、超導體等等,完全改變了20世紀人類的生活。

到了20世紀末年,科學家又發現有可能更進一步實際利用量子物理中的特殊性質(如量子疊加、量子糾纏),創造出新的應用領域,例如以量子位元(Qubit)為運算基礎的量子電腦,會有可能大大改變目前的密碼學以及許多科學與技術領域。2019年10月,谷歌的研究團隊宣布他們已經成功建造一個有50量子位元的量子電腦,並實際證明它在某些運算上會超越目前最快的古典電腦。這代表了一個重要的里程碑,也象徵第二次量子革命已經在本世紀開始發生了。在這個演講中,我希望給大家介紹這個科技上重要的發展以及未來的展望。

 
The Past, Present, and Future of Nanomaterial Research
奈米材料的過去、現在、與未來


After the discovery of quantum mechanics in the 20th century, the development and applications of advanced materials have become important research areas with tremendous impact. Many of the key materials have entered the nanoscale, namely, the relevant dimension is of the order of 10-9 meters. In this length scale, we need to use quantum physics to describe the properties of materials. It is believed that nanomaterials will continue to play a critical role in the development of future technologies. In this talk, I will explain the importance of quantum physics at the nanoscale and introduce the recent developments of nanomaterials, especially those one-dimensional and two-dimensional systems.

從二十世紀建立量子物理以來,相關的尖端材料發展與應用已經成為一個重要的研究領域。很多關鍵的材料已經進入奈米尺度,也就是說,每一個單位元件的大小是以奈米(十億分之一米)作為長度測量。在這個尺度之下,我們必須要用量子科學來描述相關的物理現象。一般科學家相信奈米材料將成為未來工業技術中具有關鍵性的核心環節。在本次演講中,我將說明量子科學與古典物理的差別,並介紹奈米材料中的最新進展,尤其是近年來在各種一維和二維的奈米系統上的研究成果。


 


電話:02-23970955 傳真:02-23215937 通訊地址:台北市大安區和平東路一段77號12F之1 電子郵件:wcsedfnd@ms21.hinet.net