吳健雄科學營 講座大師

講座大師

第 25 屆講座大師

李遠哲 博士

李遠哲 博士 (Dr. Yuan-Tseh Lee)

1986年諾貝爾化學獎得主

美國際科學理事會前會長,中央研究院前院長

美國國家科學院院士、中央研究院院士

我們正在改變我們的大氣層

從上個世紀的中葉,由於人口暴增,人均消費的大量增加,人類在地球上開始超載了。也就是說太陽已不能夠把人類產生的東西循環回歸到大自然。環境的破壞,使人類在地球上的永續發展,不但變成很嚴重的問題,極端氣候與可能發生的突變,將使人類在地球上的生存受到嚴重的威脅。

環境變遷中的一個重要因素,是人類使用的能源,在工業革命之後開始過度依賴化石燃料。它燃燒產生的二氧化碳在大氣中的增加,嚴重地影響地表上「吸收」與「放出」的能量平衡。非常明顯地,我們已看到地表「吸收」的能量比「放出」的能量多,也開始量測到地表溫度的上升所與它帶來的氣候變遷。

2015年12月在巴黎召開的COP21會議,195個國家領袖得到一個共識,那就是人類社會必須急速「減碳」,也就是在這個世紀的下半葉,全球要達成「碳平衡」的狀態,也就是要達到人類社會產生的溫室氣體能夠讓大自然完全吸收。

臺灣在過去半個世紀內的經濟發展,是在能源(化石燃料)能夠在世界市場上充分取得,把產生的二氧化碳無止境地排放在大氣中的條件下所得到的。現在這兩個條件已不復存在時,能源的轉型與社會的轉型變成為非常迫切的問題。這場演講,將從世界的變遷中,探討臺灣能源的轉型與我們該有的認識及決心。

Dr. Venkatraman Ramakrishnan

Dr. Venkatraman Ramakrishnan

2009 年諾貝爾化學獎得主

前英國皇家學會會長(2015-2020)

美國國家科學院院士

My adventures in the ribosome
我在核醣體的奇遇

The ribosome is the ancient and enormous molecular machine that reads genetic information on mRNA to synthesize proteins. Although it was discovered in the 1950s, it took several decades to determine an atomic structure of the ribosome because of its complexity. This talk will cover my own efforts to unravel its structure. I will also touch on my own career which took me all over the world and involved changing fields from physics to structural biology.
核醣體是一種古老且巨大的分子機器,它讀取傳訊核醣核酸(mRNA)的遺傳訊息,用以合成蛋白質。雖然核醣體在1950年代就被發現了,但是由於它的複雜性,歷經幾十年之久才確定出它的原子結構。本演講將涵蓋我自己為揭開核醣體的內部結構而作的努力。我也將談及我自己的職業生涯,這讓我走遍世界各地,其中涉及從物理學轉變至結構生物學的研究領域。

One hundred years of visualizing molecules
百年來的分子可視化

In science the ability to directly observe something has always driven major advances in everything from astronomy to biology. In this talk, I will describe how we were first able to visualize molecules and how that has made an enormous difference to our understanding of the chemistry of life
在科學上,直接觀察物體的能力,一直以來都推動了從天文學到生物學的重大進展。在本演講中,我將描述我們如何能夠將分子可視化,以及這將對我們生命中化學的理解,造成重大的影響。

何文程 教授

何文程 教授 (Dr. Wilson Ho)

加州大學爾灣分校物理系和化學系講座教授

美國國家科學院院士

中央研究院院士

Infinite Number of Steps between Upstairs and Downstairs
「在樓上」和「在樓下」之間有無限多種的組態

Electronics fabricated at present by the TSMC is based on operations on a classical bit (bit) having two possible states “0” or “1”, or “low” or “high”. Either you are upstairs or downstairs, and no other possibilities. The electronic circuits have become very complex and the achievement in fabrication and packaging by the TSMC is nothing short of being miraculous. About 120 years ago, quantum mechanics was invented and as far as we know, this theory is consistent with all our observations. While its truth is undeniable, there are some fundamental principles in quantum mechanics that are bewildering and counter to our intuition, such as the wave-particle duality and the superposition and entanglement phenomena. Instead of a bit restricted to only two states “0” and “1”, there can be an infinite number of states for a quantum bit (qubit), made up from the superposition or weighted sum of the two states. This intrinsic principle of quantum mechanics, the superposition principle, forms the basis for quantum computing, in contrast to the classical computing of TSMC, with potentially much faster speed. Furthermore, quantum sensing could equally provide much enhanced sensitivity for precision measurement. Quantum computing and sensing are novel and different from the many existing technologies, also based on quantum mechanics, such as the MRI, lasers, LED, cell phones, and laptops that have become indispensable in our daily lives. In this presentation, this second quantum revolution of quantum computing and sensing, based on the superposition principle, will be explored and contrasted with the existing classical computing and sensing.
目前由台積電製造的電子元件是基於對古典位元(bit)的操作,該位元具有兩種可能的狀態,即「0」或「1」,或者「低」或「高」。就像:你不是「在樓上」,就是「在樓下」,兩者居其一,沒有其他可能性。電子電路已經變得非常複雜,而台積電在製造和封裝方面的成就,簡直是神奇。大約120年前,量子力學才被創造出來,據我們所知,這一理論與我們所有的觀察結果一致。儘管其真實性不可否認,但量子力學中有一些基本原理令人困惑,與我們的直覺相違背,例如波粒二象性、疊加和纏結現象等。量子位元(qubit)不受限於僅有的「0」和「1」兩種狀態,還可以有無限多種的組態,這些組態由這兩種狀態的疊加或加權和組成。量子力學的這一基本原理,即疊加原理,構成了量子計算的基礎,與台積電的經典計算形成對比,具有潛在的更快速度。此外,量子感測技術對於精密測量可以同樣地提供更高的靈敏度。量子計算和感測是新穎的技術,有別於許多現有的技術,這些新穎技術也是立基於量子力學,例如磁振造影(MRI)、雷射、發光二極體(LED)、手機、和筆記型電腦等,已經成為我們日常生活中不可或缺的部分。本演講將探討基於疊加原理的量子計算和感測的第二次量子革命,並對照現有的古典計算和感測。

A Quantum Microscope for Space-Time Sensing
一種用於時空感測的量子顯微鏡

In contrast to all other microscopes, a quantum microscope (QM) based on the scanning tunneling microscope (STM) is unique in incorporating the quantum superposition principle in its operation. This QM uses the superposition of two levels in a single hydrogen molecule as the sensor to probe the electric fields at a solid surface. In a pilot study (Science 376, 401, 2022; PRL 130, 096201, 2023) the QM demonstrates a 300-fold finer energy resolution and 0.1 angstrom spatial sensitivity of the sample’s near-field electrostatics, compared to microscopes not based on this quantum principle. Furthermore, the wave-particle duality, nonlinear Stark effects, superposition of multiple quantum states, and entanglement among adjacent two levels illustrate the sensitivity of the QM to a set of basic phenomena underlying quantum mechanics. This QM advances precision measurement with space-time resolution by irradiating the STM junction with femtosecond THz radiation and recording in the time domain coherent oscillations of the rectified tunneling current. The common occurrence of systems with two levels within a double-well potential suggests a broad application of the QM in probing the heterogeneous distribution of static and dynamic properties of electrons in functional materials.
「相比於所有其他顯微鏡,立基於掃描穿隧顯微鏡(STM)的量子顯微鏡(QM),在其操作中獨特地融入了量子疊加原理。這種量子顯微鏡利用單一氫分子中的兩個能級的疊加,作為感測器,來探測固體表面上的電場。在一項先導型的研究中(參見《Science》376,401,2022年;《Physical Review Letters》130,096201,2023年),對照不基於這一量子原理的顯微鏡,該量子顯微鏡展示了300倍更精細的能量解析度和0.1埃的樣品近場靜電學的空間靈敏度。此外,波粒二象性、非線性斯塔克效應、多重量子態的疊加、以及相鄰兩個能級之間的纏結,展示了量子顯微鏡對量子力學中一系列基本現象的敏感性。這種量子顯微鏡以飛秒級太赫茲(THz)輻射,照射到掃描穿隧顯微鏡的連結點上,並在時域內記錄整流穿隧電流的相干振盪,推升了空間和時間解析度的精密測量的進展。在雙阱位能中常出現有兩個能級的系統,表明量子顯微鏡在研究功能材料方面,探測其電子的靜態和動態性質的非均質分佈,具有廣泛應用的價值。

賀曾樸 教授

賀曾樸 教授 (Dr. Paul T. P. Ho)

中央研究院天文物理研究所特聘研究員

東亞天文台台長、James Clerk Maxwell天文台台長

中央研究院院士

Studying Gravity around Black Holes
黑洞周圍的重力研究

There are three fundamental ways to study strong gravity in the vicinity of black holes: "Hearing" via Gravitational Waves, "Feeling" via the Gravitational Forces on nearby stars, and "Seeing" via the Imaging of the Shadow around black holes caused by the bending of the light due to General Relativity. The first two types of studies have now won the Nobel Prize in Physics in 2017 and 2020. Taiwan has played a central role in the detection of the shadows around the supermassive black holes in the M87 Galaxy and the Milky Way Galaxy, reported in 2019 and 2022. In this talk, we will explain the three experiments and the story behind the work, as well as the future in this field.
有三種基本方法可用於研究鄰近黑洞的強大重力:「監聽」重力波、「感測」作用於附近恆星的重力、「監看」由於廣義相對論引起的光線偏折,而致形成在黑洞周圍的陰影圖像。前兩種研究的成果已經贏得2017年和2020年的諾貝爾物理獎。在監測位於M87星系和銀河系的超大型黑洞周圍的陰影圖像方面,台灣扮演了中心角色,並在2019年和2022年發表了研究結果。在本次演講中,我將解釋這三項實驗和它們背後的故事,以及這一領域的未來研究發展。

Astronomy as the Stimulus for Science Education
天文學作為科學教育的激勵因素

Astronomy addresses the critical questions of "origins", such as origin of life, origin of the universe, origin of our solar system and our planets. Seeking answers to such fundamental questions have always been of interest to the public and even very young children. Astronomy provides the tools and technology which allows the advancement of science and society. Developments of telescopes, CCD cameras, nuclear energy, all have origins in the study of the universe. Future fields such as big-data science, artificial intelligence, novel material science, are all currently pursued in astronomy. For these reasons, we hope that the next generation of young people will take interests in the development of science and technology as the solutions for the future.
In Taiwan, astronomy has developed rapidly in the last thirty years. Our scientists work at the forefront of this field. Learning science and technology and seeking professional careers in astronomy are very viable options for the future. In this talk, we will report on the current status of the field of astronomy in Taiwan.
天文學致力於解答有關「起源」的關鍵問題,例如生命的起源、宇宙的起源、太陽系和行星的起源等。探尋對這些起源問題的解答,長久以來一直吸引公眾,甚至是幼童,的興趣。天文學提供了工具和技術,促成科學和社會的進步。天文望遠鏡、CCD相機(電荷耦合元件相機)、核能等的發展,皆源自於天文學的研究。將來的研究領域如大數據科學、人工智慧、新穎材料科學等全是目前天文學的探究項目。基於這些理由,我們希望青年新世代能有興趣投入科學和技術的研究發展,提供未來的解決方案。
台灣的天文學研究在過去的三十年間進展迅速。我們的科學家活躍在該研究領域的前沿。學習科學和技術,並投入天文學行業的專業生涯,在未來是非常可行的選擇。在本演講中,我將報告台灣在天文學領域的研究現況。

Dr. Alec M. Wodtke

Dr. Alec M. Wodtke

德國哥廷根大學物理化學研究所教授

德國馬克斯·普朗克多領域科學研究所所長

Progress toward building the world’s greatest microscope: The joys of making theory and experiment work together
邁向建造世界上最偉大的顯微鏡:理論與實驗相輔相成的喜悅

In a 1967 episode of the iconic television series Star Trek (Raumschiff Enterprise auf Deutsch), Mr. Spock explained:
“If I let go of a hammer on a planet that has a positive gravity, I need not see it fall to know that it has in fact fallen.” Mr. Spock
Spock’s idea to see with your mind’s eye the motion of matter is an extremely powerful concept in the field of chemical dynamics. Just as with the classical motion of matter in a gravitational field, the quantum mechanical world of chemical motion is also well on its way to being understood. This viewpoint opens us to the idea that we might make slow-motion movies of the atoms involved in chemical reactions; if you will; “the world’s greatest microscope” is a matter of accurate theoretical calculation. In this lecture, you will see examples of such computed movies that reveal the intricate dance of atoms during simple reactions at surfaces. While this sounds straightforward, obtaining reliable movies requires more than computation. Like all theories in chemistry, the approximations needed to obtain results must be tested by comparison to experiment. Theory can also be exploited to compute accurate rates of thermal reactions, perhaps the most fundamentally important quantities in chemistry. New ways to measure rates of reactions at surfaces with unprecedented precision and accuracy reveal the subtle ways that quantum mechanics influences the theory of chemical reaction rates.
1967年的一集具有象徵意義的電視劇《星艦迷航記》(德文名為《Raumschiff Enterprise》)中,史波克先生解釋道:
「如果我在一個有正向重力的行星上放開一把錘子,我不需要看到它掉落下去,來確認它已實際掉落。」史波克先生
在化學動力學領域中,史波克以心靈之眼觀察物質運動的想法,是一個極其強大的概念。就像物質在重力場中的古典運動一樣,化學運動的量子力學世界也正在逐漸被理解。這種觀點讓我們能夠想像,我們可以製作慢動作電影,來觀察化學反應中所涉及的原子;如果你願意,可以說:「世界上最偉大的顯微鏡」是一個準確的理論計算的問題。在本演講中,你將看到一些這樣的計算電影示例,揭示了在表面上進行簡單反應期間原子的精巧舞動。儘管這聽起來簡單易懂,但獲得可靠的電影,所需要的不僅僅是計算。像化學中的所有理論一樣,為了獲得結果,必須通過與實驗進行比較,來測試所需的近似方法。理論還可以被應用來計算熱反應的準確速率,這可能是化學中最基本重要的量。以前所未有的精確度和準確度,測量表面反應速率的新方法,揭示了量子力學對化學反應速率理論的微妙影響方式。

第 24 屆 講座大師